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By separation of a time variable, the nonstationary problem is reduced to a problem on eigenvalues and
eigenfunctions. The method of superposition of geometrically one-dimensional F(ξi) solutions, where ξi are
special variables, is employed to solve it. The integral superposition of the functions F(ξi) yields the solution
assumed. Fulfillment of the boundary conditions leads to the problem on eigenfunctions in the form of a gen-
eralized Fredholm integral equation of the first kind with known simple kernels. The resulting approximate so-
lution of the nonstationary problem has the analytical form of a finite sum; it exactly satisfies the initial
differential equation, the initial conditions, and the boundary conditions at the points of division of the bound-
ary into small portions and approximately satisfies just the conditions between these points. A theorem on the
possibility of multiplying together eigenfunctions which can be employed for regions of complex shape has
been proved.

If boundary-value nonstationary problems are solved analytically, one uses either the Fourier method [1] or
any integral transformation, or constructs the solution by approximate determination of eigenfunctions and eigenvalues
by the method of Ritz [2] or Galerkin [3], or employs finite-difference methods [4]. In the case of a curvilinear shape
of a solid body, all the methods enumerated are inefficient, since there are no grounds for construction of a specific
fundamental system of functions, whose properties have been studied in depth and in sufficient detail by V. A. Il’in
[5]. The exception is provided by isolated investigations in which one is able to solve applied problems for classical
regions. Thus, in [6, 7], the convergence of spectral decomposition has been improved by the integral transformation
of Fourier and Hankel with the use of the auxiliary quasistatic problem, and the exact solutions have been obtained.
The approximate solutions obtained by simultaneous application of the methods of Kantorovich, Fourier, and Bubnov
and Galerkin and the least-squares method have been given for the same classical regions in [8]. The method proposed
below involves carrying out the following operations.

1. Replacement of the General Nonstationary Problem by Three Simpler Problems. Let us consider one
boundary-value problem on heating of a solid body in the general formulation

ut = a∆u + f (t, x, y) ,   u Γ = µ (t, xΓ, yΓ) ,   u t=0 = ϕ (x, y) . (1)

Other boundary conditions will be considered below. We seek the solution for a certain curvilinear simply
connected region Ω with boundary Γ. Problem (1) is usually subdivided into three auxiliary problems [1] and the so-
lution is represented by the following sum:

u = M + v + w . (2)

Here all three functions remain to be determined and can depend on t, x, and y; M is the boundary function, which
may not satisfy the differential equation from (1) but is selected in such a manner as to be differentiable with respect
to t and doubly with respect to x and y and to satisfy the boundary conditions from (1)

M Γ = µ (t, xΓ, yΓ) . (3)
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Let the function v satisfy the homogeneous heat-conduction equation, the homogeneous boundary condition,
and the inhomogeneous initial condition

vt = a∆v ,   v Γ = 0 ,   v t=0 = ϕ
__

 ,   ϕ
__

 = ϕ − M t=0 , (4)

and the function w satisfy the homogeneous equation with homogeneous boundary and initial conditions

wt = a∆w + f
_
 ,   w Γ = 0 ,   w t=0 = 0 ,   f

_
 = f − Mt + a∆M . (5)

There are no definite recommendations as far as finding M is concerned. It is particularly difficult to select it
if the boundary Γ has a complex shape and dissimilar boundary conditions are specified on individual portions. None-
theless, we must determine M, whereupon we can turn to solution of the second basic problem (4), which is related
to the problem of finding eigenfunctions and eigenvalues and to solution of the third problem (5). After finding the
eigenfunctions and eigenvalues, we can quite easily solve problem (5).

2. Separation of the Time Variable in Problem (4) and Its Reduction to the Problem on Finding Eigenfunc-
tions and Eigenvalues. In solving problem (4), we will seek for v a particular solution without initial conditions

v = exp (− aλ2
t) R (x, y) ,   v Γ = 0 . (6)

Here the constant (−λ2) in the exponent remains to be determined and is negative. This conclusion follows from the
theory on eigenfunctions and eigenvalues [5] and from physical considerations — the function v must tend to zero
when t → ∞. Substituting v from (6) into (4), for R we obtain the following problem:

∆R + λ2
R = 0 ,   R Γ = 0 . (7)

Determination of λ values for which there exist nontrivial solutions of R from (7) is called the problem on
finding eigenfunctions and eigenvalues. In [5], it has been proved that the solution of such a problem for the bounded
curvilinear region Ω exists.

3.1. Introduction of the Variable ξ and Solution of the Problem on Finding Eigenfunctions and Eigenvalues.
In the region Ω, we select, as a pole, a point O with a radius vector r0 in such a manner that any straight line E
drawn through O intersects the boundary Γ just at two points: D+ and D−. Employing r0, we introduce a new geomet-
ric variable ξ:

ξ = (r − r0) n = (x − x0) cos θ + (y − y0) sin θ ,   (x, y) 2 Ω , (8)

where n is the unit normal to the straight line ξ = const, which makes an angle θ with the x axis, i.e., θ is a certain
angular parameter. The variable ξ possesses the following properties. If F(ξ) is a doubly differentiable function and
∆ is the Laplace operator, then

grad F (ξ) = F′ (ξ) n ,   ∆F (ξ) = F′′ (ξ) . (9)

We will seek a particular solution of Eq. (7) without boundary conditions which depends just on one variable
ξ, i.e., R = F(ξ). With account for (9), Eq. (7) for F(ξ) takes the form

F′′  (ξ) + λ2
F (ξ) = 0 . (10)

Its general solution is

F (ξ) = A (θ) cos λξ  + B (θ) sin λξ  , (11)

where A(θ) and B(θ) are considered to be the unknown functions of the parameter θ. The differential equation (7) is
linear and homogeneous; therefore, for it the principle of superposition in parameter θ holds, and then the solution of
problem (7) can be represented in the following integral form:
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R = ∫ 
0

π

[A (θ) cos λξ  + B (θ) sin λξ]  dθ +  ∑ 

i=1

n

 Ai
∗
 cos λξ i + Bi

∗
 sin λξ i


  ,

ξi = (r − r0) ni    0 < θi < π ,   i = 1, ..., n ,

(12)

where A(θ) and B(θ) are the unknown functions summed up from the viewpoint of Lebesgue and Ai
∗ , Bi

∗ , θi, and n
are the unknown coefficients, angles, and number of terms. To find all the enumerated unknowns we use the boundary
conditions from (7)

  ∫ 

0

π



A (θ) cos λξΓ + B (θ) sin λξΓ


 dθ +  ∑ 

i=1

n

 Ai
∗
 cos λξ iΓ + Bi

∗
 sin λξ iΓ


  = 0 ,

ξΓ = (rΓ − r0) n ,   ξiΓ = (rΓ − r0) ni .

(13)

Thus, the problem on finding eigenfunctions and eigenvalues has been reduced from (7) to solution of the ho-
mogeneous generalized Fredholm integral equation of the first kind (13).

As θ varies within [0, π], the set of intersection points D+ forms the boundary Γ+, whereas the set of points
D− forms the boundary Γ−

. The entire boundary Γ will consist of two parts: Γ+ and Γ−
. When θ = π the straight line

E will coincide with its position for θ = 0. If we continue to rotate the straight line E within θ 2 [π, 2π], the bound-
ary Γ will be traversed by points D+ and D− for the second time, which is unnecessary. These considerations substan-
tiate the range of variation of θ in the integral of (12) and the finite sums.

To find the solution of Eq. (13) we subdivide the interval [0, π] into small sectors ∆θj (j = 1, ..., m) and rep-
resent the integrals in (12) and (13) by finite sums. Let the subdivision be so small (m >> n) that no more than one
angle θi will find itself in each sector ∆θj. It is not known in advance in what sectors ∆θj the angles θj from the finite
sum in (12) and (13) will find themselves. To overcome this uncertainty we assume that the angles θi will find them-
selves in each small sector ∆θj. If, for example, the angles θi from the finite sum do not find themselves in any sec-
tor, the corresponding Ai

∗  and Bi
∗  will be equal to zero. Thus, the function R from (12) will approximately be

represented by the sum

R =  ∑ 

j=1

m

 (Aj cos λξ j + Bj sin λξj) ,   Aj = A (θj
∗ ) ∆θj + Aj

∗
 ,

ξj = (r − r0) nj ,   j = 1, ..., m ,   Bj = B (θj
∗ ) ∆θj + Bj

∗
 ,

(14)

where θj
∗  are certain average values of the angles θi in the sectors ∆θj.
The constants Aj and Bj consist of two parts. The first parts, A(θj

∗ ), ∆θj, and B(θj
∗ )∆θj, depend on the method

of subdivision, whereas the second parts, Aj
∗  and Bj

∗ , are independent of it. We employ this property for finding the
quantities Ai

∗  and Bi
∗  and their number n in the sums of expressions (12) and (13). If the order of certain Aj and Bj

remains constant with decrease in ∆θj, the corresponding Aj
∗  and Bj

∗  exist and their number is equal to the n sought.
In constructing the solution, it is not necessary to seek the points of intersection D+ and D− of the straight lines E and
the boundary. It is simpler to subdivide Γ into smaller portions irrespective of the angles θj and the straight lines E
in such a manner that the points of subdivision at Γ are twice as many as the angles θj and to subsequently fulfill the
boundary conditions at these points. Therefore, setting r = rk (k = 1, ..., 2m) in (14), we represent boundary conditions
(13) in the form

   ∑ 

j=1

m

 (Aj cos λξkj + Bj sin λξkj) = 0 ,   ξkj = (rk − r0) nj ,   j = 1, ..., m ,   k = 1, ..., 2m . (15)
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In (15), we have a linear algebraic homogeneous system of 2m equations for 2m unknown Aj and Bj. The
condition of existence of the nontrivial solution of this system is the equality of its determinant to zero:

∆2m =  cos λξkj, sin λξkj  = 0 . (16)

This is precisely the sought characteristic equation for finding the spectrum of eigenvalues 


λi




. In [5], it has been

proved that all its roots λi are real and different. If we set λ = λi in system (15), the determinant ∆2m will vanish. By
this we mean that one equation of system (15) becomes dependent on all the remaining equations; therefore, we can
drop it. All the equations of the system are equally justified; then we drop, for example, the last equation for k = 2m
and obtain a contracted linear system with a determinant ∆2m−1. When λ = λi we should add the subscript i to the
coefficients Aj and Bj in system (13), i.e., now these coefficients will be denoted as Aij and Bij. The coefficients Aij
and Bij from the contracted system (15) are determined accurate to an arbitrary factor; therefore, we can easily use it
and consider it to be 1, for example, Bim = 1. Once the last equation from (15) has been dropped, the contracted sys-
tem of (2m − 1) equations for (2m − 1) unknown Aj and Bj will have the form

   ∑ 

j=1

m

 Aij cos λiξkj +  ∑ 

j=1

m−1

 Bij sin λiξkj = − sin λiξkm ,   k = 1, ..., 2m ,   i = 1, ..., ∞ . (17)

We find Aij and Bij from system (17) and substitute them into the solution of (14). Taking into account that Bim = 1,
for the eigenfunctions Ri we obtain

Ri =  ∑ 

j=1

m

 

Aij cos λiξj + Bij sin λiξj

 . (18)

Finding the spectrum 


Ri




 directly in explicit form is critical, since we can then construct the solution of prob-

lem (1) in the general case. This will be shown below, and now we consider the problem on finding eigenfunctions
and eigenvalues for the region of complex shape and the case where the boundary conditions are specified piecewise.
Thereafter we complete construction of the solution of the general problem (1).

3.2. Case of the Region of Complex Shape. Let the region Ω have a complex shape and let it be impossible
to select one pole from which all the points of the boundary Γ would be seen. Then we subdivide the region Ω into
several parts Ωi having a simple shape. For the sake of definiteness, we will assume that Ω can be subdivided into
two appropriate parts Ω1 and Ω2 by a certain line Γ3. The entire boundary Γ is now divided by the line Γ3 into parts
Γ1 and Γ2. Let the boundary of the region Ω1 consist of Γ1 k Γ3 and the boundary Ω2 consists of Γ2 k Γ3, where
Γ3 is the shared portion of the boundary of the regions Ω1 and Ω2. The eigenfunctions R in Ω will be determined by
the equalities

R = 











R
(1)

 ,   if  (x, y) 2 Ω1 ;

R
(2)

 ,   if  (x, y) 2 Ω2 .

(19)

The functions R(p) (p = 1, 2) are determined in Ωp and vanish at Γ:

R
(p) Γp

 = 0 ,   p = 1, 2 . (20)

Furthermore, at the adjacent (contact) boundary Γ3, the functions R(1) and R(2) and their derivations normal to Γ2 must
be continuous:

R
(1) Γ3

 = R
(2) Γ3

 ,   ∂R
(1) ⁄ ∂n Γ3

 = ∂R
(2) ⁄ ∂n Γ3

 . (21)
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To specify the expressions of R(p) we select only one pole r0p per region Ωp so that any straight line E
drawn through r0p intersects the boundary Γp k Γ3 just at two points. We introduce only one variable ξ(p) for each re-
gion Ωp:

ξ(p)
 = (r − r0p) n ,   p = 1, 2 . (22)

The unit normal n(p) in (22) makes, as formerly, an angle θ with the x axis and θ varies within [0, π]. We
apply only 2mp dividing points with radius vectors ri

(p), where i = 1, ..., mp, p = 1, 2, at the boundaries Γp and 2m3
such points with radius vectors ri

(3), where i = 1, ..., 2m3, at Γ3. Then a total of 2(mp + m3) dividing points will be
applied at the entire boundary of the region Ωp, i.e., at Γp k Γ3. This means that there must be (mp + m3) angular di-
visions θj

(p) in Ωp, i.e., half as many as the points at the corresponding boundary. The angular divisions θj
(p) will be

numbered by j = 1, ..., (mp + m3), where p = 1, 2. Let us determine, similarly to (14), the functions R(p) in Ωp by the
expressions

R
(p)

 =   ∑ 

j=1

m3+mp

   Aj
(p)

 cos λξ j
(p)

 + Bj
(p)

 sin λξj
(p)

  ,   ξj
(p)

 = (r − r0p) nj
(p)

 ,   p = 1, 2 . (23)

The expressions of R(p) from (23) contain 2(m1 + m2 + m3) unknown constants Aj
(p) and Bj

(p). To find them we
write boundary conditions (20) and (21) at the corresponding dividing points at the boundaries Γ1, Γ2, and Γ3:

     ∑ 

j=1

m3+mp

  Aj
(p)

 cos λξ ij
(p)

 + Bj
(p)

 sin λξ ij
(p)

  = 0 ,   ξij
(p)

 = (ri
(p)

 − r0p) nj
(p)

 ,   i = 1, ..., mp ,

     ∑ 

j=1

m1+m3

  Aj
(1)

 cos λξkj
(13)

 + Bj
(13)

 sin λξkj
(1)

  =   ∑ 

j=1

m2+m3

  Aj
(2)

 cos λξkj
(23)

 + Bj
(2)

 sin λξkj
(23)

  ,

     ∑ 

j=1

m1+m3

  (nk
(3)

nj
(1)) Bj

(1)
 cos λξkj

(13)
 − Aj

(1)
 sin λξkj

(13)
  =   ∑ 

j=1

m1+m3

  (nk
(3)

nj
(2))  Bj

(2)
 cos λξkj

(23)
 − Aj

(2)
 sin λξkj

(23)
  ,

ξkj
(p3)

 = (rk
(3)

 − r0p) nj
(p)

 ,   k = 1, ..., 2m3 ,   p = 1, 2 ,

(24)

where nk
(3) are the unit normals to Γ3 as its dividing points rk

(3), which are directed toward any of the regions Ω1 and
Ω2. This homogeneous system of linear equations (24) contains respectively 2m1, 2m2, and 2m3 and additionally 2m3
equations for the same number of the unknown Aj

(p) and Bj
(p). By equating the determinant of the system to zero, we

obtain the equation for the spectrum C3 of eigenvalues 


λi




 and then, after dropping the last equation from system

(24), we analogously find the unknown Aj
(p) and Bj

(p), thus determining the specific form of the functions Ri
(p) from

(23) and of the eigenfunctions Ri from (19).
3.3. Boundary Conditions Are Specified Piecewise. The method proposed for finding eigenfunctions and eigen-

values is also suitable for the case where the boundary conditions are specified piecewise. Let the Dirichlet conditions
be specified on one part of the boundary Γ1 and the Neumann conditions be specified at the remaining boundary Γ2:

R Γ1
 = 0 ,   ∂R ⁄ ∂n Γ2

 = 0 . (25)

We will assume that the entire boundary is closed and consists of the parts Γ1 and Γ2. We have applied
2m1 dividing points with radius vectors rk, where k = 1, ..., 2m1, at Γ1 and 2m2 such points with radius vectors rk,
where k = (2m1 + 1), ..., 2(m1 + m2), at Γ2. A total of 2m = 2(m1 + m2) dividing points have been applied at Γ. The
angles θj vary within [0, π] and their total number is equal to m = m1 + m2.
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The expression for the eigenfunctions R should be sought in the form (14) irrespective of the type of bound-
ary conditions. Having fulfilled the first boundary condition from (25) at 2m1 points of the boundary Γ1 and the sec-
ond condition from (25) at 2m2 points of the boundary Γ2, we obtain the following homogeneous linear system of
2(m1 + m2) equations for 2(m1 + m2) unknown Aj and Bj:

  ∑ 

j=1

m

 (Aj cos λξij + Bj sin λξij) = 0 ,   ξij = (ri − r0) nj ,   i = 1, ..., 2m1 ,   j = 1, ..., m ;

  ∑ 

j=1

m

 (nk
(2)

nj) (Bj cos λξkj − Aj sin λξkj) = 0 ,   ξkj = (rk − r0) nj ,   k = (1 + 2m1), ..., 2m ,

(26)

where nk
(2) are the unit internal normals to Γ2 at the corresponding dividing points. By equating the determinant of

system (26) to zero, we obtain the equation for the spectrum C3 of eigenvalues 


λi




. After dropping the last equation

from (26), we compute the corresponding Aij and Bij, where j = 1, ..., m and i = 1, ..., ∞, for each λj. After substi-
tution of the resulting Aij and Bij into (14), we find the spectrum of eigenfunctions 



Ri




.

The above examples show that eigenfunctions and eigenvalues can also be found just in the same manner in
the case of multiply connected regions by subdividing them by auxiliary lines into several simply connected regions.

4. Finding the v-Solution of Problem (4). We will assume that the eigenfunctions Ri have been determined by
expression (14) with the use of system (15), or system (24), or (26) depending on the specific case. In [5], it has been
proved that the set of eigenfunctions 



Ri




 forms a complete orthogonal system of functions in Ω, and if f(x, y) belongs

to the class of Sobolev and Liouville Lp
α, its Fourier series uniformly converges for α > 1 ⁄ 2 and αp > 2, p ≥ 1. We as-

sume that the spectra 


λi




 and 



Ri




 have been found. Then, from (16), we obtain vi:

vi = exp (− aλi
2
t) Ri (x, y) (27)

and represent the solution of problem (4) by the sum

v =  ∑ 

i=1

∞

 Civi ,
(28)

where Ci are constants. Such a function v satisfies in construction the differential equation and the boundary conditions
from (4). It remains to fulfill the initial condition, which takes the form

  ∑ 

i=1

∞

 CiRi = ϕ
__

 . (29)

The series (29) can be considered as the decomposition of ϕ
__

 into eigenfunctions 


Ri




. If ϕ

__
 2 Lp

α, the series
(29) in Ω uniformly converges; the decomposition coefficients Ci will be found from the formulas

Ci = ∫
Ω
∫ ϕ

__
RidS/Ni ,   Ni = ∫

Ω
∫ Ri

2
dS . (30)

Thus, we have found the function v and have obtained the solution of problem (4).
5. Finding the w-Solution of the Problem (5). We assume that f

_
 2 Lp

α and it can be decomposed into 


Ri




:

f
_
 =  ∑ 

i=1

∞

 αi (t) Ri ,   αi (t) = ∫
Ω
∫ f

_
RidS ⁄ Ni . (31)
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We note that if f is independent of the time t, the decomposition coefficients αi from (31) will also be inde-
pendent of t. The solution of problem (5) will be sought in the form of decomposition into the eigenfunctions 



Ri





which have already been found:

w =  ∑ 

i=1

∞

 Di (t) Ri ,   Di (0) = 0 , (32)

where Di(t) are the unknown decomposition coefficients satisfying the zero boundary conditions from (32). The quan-
tity w determined in such a manner obviously satisfies the initial and boundary conditions from (5). To find Di(t) we
substitute w from (32) and f

_
 from (31) into the differential equation (5):

  ∑ 

i=1

∞

 Di
′Ri =  ∑ 

i=1

∞

 aDi∆Ri +  ∑ 

i=1

∞

 αiRi . (33)

Replacing ∆Ri from (7) by −αi
2Ri and equating the coefficients of Ri on the left- and right-hand sides of Eq.

(33), we obtain the differential equation for Di(t):

Di
′ + aλi

2
Di = αi ,   Di (0) = 0 . (34)

Its solution has the form

Di = exp (− aλi
2
t) ∫ 

0

t

αi (τ) exp (aλi
2τ) dτ . (35)

Thus, the solution for w is represented by the expression

w =  ∑ 

i=1

∞

 Ri exp (− aλi
2
t) ∫ 

0

t

αi (τ) exp (aλi
2τ) dτ . (36)

Finally, the solution of problem (1) has the form (2), where M satisfies boundary conditions (3), v is taken
from (28), and w is taken from (36).

6. Organization of Numerical Calculation. In constructing the solution of u, the greatest difficulties arise when
a linear system of the type (18) is solved. We show that when the number of dividing points 2m is fairly large, the
determinant ∆2m−1 of this system can prove comparable to a "computer zero." For this purpose we subtract the
(k − 1)th line of this determinant from the kth line and write the result into the kth line:

Aij (cos λiξkj − cos λiξ(k+1)j) = Aij [cos (λi (rk − r0) nj) − cos (λi (rk+1 − r0) nj) =

= 2Aij sin 


1
2

 λi (rk+1 − rk) nj



 sin 


λi 





1
2

 (rk+1 + rk) − r0



 nj




 . (37)

The vector (rk+1 − rk) joins the kth dividing points at Γ and the (k − 1)th point. Therefore, the quantity hkj =
(rk+1 − rk)nj is equal to the projection of the dividing step onto the straight line E drawn through the pole r0 at an
angle θj to the x axis, i.e., hkj is a small quantity. Consequently, all the lines in the transformed determinant ∆2m−1
will consist of small quantities. It follows that ∆2m−1 has an order of smallness of D(hkj)

2m−1, i.e., as the number of
dividing points increases, the determinant ∆2m−1 decreases and can prove comparable to a "computer zero" for a cer-
tain m. This circumstance presents difficulties in numerical realization of the method. To overcome them we should
normalize the algebraic system (15) or (24), or (26) depending on the case. For this purpose, we compute the deter-
minant ∆2m−1 and then divide each equation of system (15) by the quantity K2m−1 = (∆2m−1)1 ⁄ (2m−1). If ∆2m−1 is so
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small that the quantity K2m−1 proves to be computed with a large error, we should compute once again the determi-
nant ∆2m−1

(1)  in the resulting new system of equations. If the determinant proves different from 1, each equation of the
new system must be divided by the quantity K2m−1 = (∆2m−1)1 ⁄ (2m−1) for the second time. Such a transformation must
be performed until the determinant of the system of (2m − 1) equations becomes equal to 1. Once the process of nor-
malization of system (15) is completed, which is usually attained in two operations, all the unknowns are easily com-
puted.

7. Construction of Eigenfunctions for Complex Regions with Complex Boundary Conditions. Of considerable
utility can prove the theorem on multiplication of eigenfunctions together. Eigenfunctions are usually employed in the
form of linear combinations; here we prove a theorem on the possibility of multiplying them together in a particular
case.

We introduce the definition of geometric orthogonality of any two differentiable functions U1(x, y, z) and
U2(x, y, z). Their level surfaces have the form

U1 (x, y, z) = C1 ,   U2 (x, y, z) = C2 . (38)

The functions U1 and U2 will be called geometrically orthogonal if their level surfaces are mutually orthogonal, i.e.,

(grad U1) (grad U2) = 0 . (39)

We give the simplest example. If U1 = U1(x) and U2 = U2(y), then we have (grad U1) ((grad U2) = 0).
Theorem. Let two eigenfunctions U1 and U2 be solutions of the problem

∆Up + λp
2
Up = 0 ,   (x, y, z) 2 Ωp ,   Lp [Up]Γp

 = 0 ,   p = 1, 2 , (40)

where L1 and L2 are the linear operators corresponding to a homogeneous boundary condition. We introduce the no-
tation Ω = Ω1 3 Ω2 and denote its boundary as Γ = Γ1

∗  + Γ2
∗ , where Γ1

∗  = Γ1 3 Ω2  and Γ2
∗  = Γ2 3 Ω1 are the parts

of the boundaries Γ1 and Γ2 respectively. Let the regions Ω1 and Ω2 be such that their boundaries Γ1 and Γ2 are
orthogonal and the two eigenfunctions U1 and U2 possess the property of geometric orthogonality (39). Then the prod-
uct of these eigenfunctions

u (x, y, z) = U1U2 (41)

will also be eigenfunction in the region Ω with boundary Γ and will be the solution of the problem

∆u + λ2
u = 0 ,   L1 [u]Γ1

∗  = 0 ,   L2 [u]Γ2

∗  = 0 , (42)

where

λ2
 = λ1

2
 + λ2

2
 . (43)

Proof. The Laplace operator of the function u will be represented as follows:

∆u = (grad) (grad U1U2) = (grad) (U1 grad U2 + U2 grad U1) =

= U1∆U2 + U2∆U1 + 2 (grad U1) (grad U2) = U1∆U2 + U2∆U1 . (44)

Here the last equality has been obtained with the use of the property (39). We eliminate ∆Up from (44) using (40):

∆u = − λ2
2
U1U2 − λ1

2
U2U1 = − (λ1

2
 + λ2

2) U1U2 = − λ2
u . (45)

It follows from (45) that u = U1U2 satisfies Eq. (42). Let us analyze the boundary conditions for u. Since the bounda-
ries Γ1

∗  and Γ2
∗  are mutually orthogonal the operator L1 at the boundary Γ1

∗  does not influence the function U2 and,
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conversely, the operator L2 at Γ2
∗  does not influence U1. Then the boundary conditions for u can be represented in the

form

L1 [U1U2]Γ1

∗  = U2L1 [U1]Γ1

∗  = 0 ⇒  L1 [u]Γ1

∗  = 0 ,

L2 [U1U2]Γ2

∗  = U1L2 [U2]Γ2

∗  = 0 ⇒  L2 [u]Γ2

∗  = 0 .

Hence we obtain the proof of the theorem, which makes it much easier to find eigenfunctions and eigenvalues for
complex regions with complex boundary conditions if the corresponding conditions are fulfilled.

The results obtained can be generalized to the case of spatial problems. The simplicity and high accuracy
make it possible to employ this method for solution of complicated practical engineering problems.

NOTATION

a, thermal diffusivity, m2/sec; A(θ) and B(θ), unknown functions, K; Ai
∗ , Bi

∗ , Ai, Bi, Aj, and Bj, unknown co-
efficients, K; C1 and C2, constants, K; Ci and Di(t), coefficients of spectral decompositions of the functions v and w;
D+ and D−, points of intersection of these rays and Γ; E and n, rays and unit vectors along them drawn at an angle
θ to the x axis; F(ξi), one-dimensional particular solution, K; f, internal source, K/sec; f

_
, internal source in the equation

for w, K/sec; hkj, projection of the dividing step of the boundary, m; L1 and L2, operators of the boundary conditions;
Lp

α, functional sets of Sobolev and Liouville, where α and p are the parameters of a set; M and v and w, boundary
function and auxiliary functions, K; 2m, number of dividing points of the boundary; n, unknown number of terms;
r0, radius vector of the pole; r, rΓ, and rk, radius vectors of arbitrary points in Ω, at Γ, and at the points of division
of Γ into small parts respectively; r0p, radius vectors of the poles in Ωp; R, eigenfunction, K; R(1) and R(2), compo-
nents of the eigenfunction R in the regions Ω1 and Ω2, K; t, time, sec; U1 and U2, two geometrically orthogonal
eigenfunctions, K; u, temperature, K; vi, particular solutions, K; x, y, Cartesian coordinates, m; xΓ, yΓ, coordinates of
the points at Γ, m; αi(t), coefficient of spectral decomposition of the function f

_
, 1/sec; Γ1 and Γ2, parts of the bound-

ary Γ; Γ1
∗  and Γ2

∗ , parts of the boundaries Γ1 and Γ2; ∆, Laplace operator; ∆2m, characteristic determinant; ∆2m−1, de-
terminant of the contracted system; θj

∗ , angles in the sectors ∆θj
∗ ; λ, eigenvalues, 1/m; µ and ϕ, boundary and initial

conditions, K; ξi, special variables, m; ξΓ, ξiΓ, and ξkj, values of the variable ξ at Γ, m; ξ(p) and ξj
(p), special variables

in Ωp for an arbitrary ray and for the ray along nj
(p), i.e., the unit vectors, m; ξij

(p), special variables at the boundaries
Γp, m; ξkj

(p3), special variables at the dividing points of the boundary Γ3, m; ϕ, initial condition for v, K; Ω and Γ,
region and its boundary; Ω1 and Ω2, parts of the region Ω; Γ3, their adjacent boundary. Subscripts: i, Nos. of terms
in the finite sum; n, number of terms in the finite sum; j, Nos. of the dividing points of the boundary Γ; 2m, number
of dividing points; p = 1, 2, Nos. of simply connected regions.
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